If it's not what You are looking for type in the equation solver your own equation and let us solve it.
55^2+73^2=h^2
We move all terms to the left:
55^2+73^2-(h^2)=0
We add all the numbers together, and all the variables
-1h^2+8354=0
a = -1; b = 0; c = +8354;
Δ = b2-4ac
Δ = 02-4·(-1)·8354
Δ = 33416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{33416}=\sqrt{4*8354}=\sqrt{4}*\sqrt{8354}=2\sqrt{8354}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{8354}}{2*-1}=\frac{0-2\sqrt{8354}}{-2} =-\frac{2\sqrt{8354}}{-2} =-\frac{\sqrt{8354}}{-1} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{8354}}{2*-1}=\frac{0+2\sqrt{8354}}{-2} =\frac{2\sqrt{8354}}{-2} =\frac{\sqrt{8354}}{-1} $
| 55^2+73^2=h | | 16+5x=-3(4-3x) | | 2d+-8=-2 | | 88y-6y-11=9.08. | | 8y-6y-11=9.008. | | 9=-z+5 | | 1x-2=-51 | | 4-4f=-12 | | w/5-9=78 | | 4x-4=2x−1 | | 11x+25x+10=58° | | 12x-1=70+24x+3 | | 5.6+z=−8 | | -14=7.3+f | | 3x+10+4x+22+5x+11=180 | | 5×+8=3x-5 | | 8=10y-3y-6 | | 187,5/y=150 | | 3b/7+3=8 | | 19z−10z−8=10 | | 1.3t=-52 | | 9x=3x+99 | | 55+73=h | | 55+h=73 | | 6x+2x-60=90 | | 6x+2x-60=180 | | 6x+17+2x+3=52 | | 3x2=2x+13/3 | | 15y-10y-13=50.90 | | 5c+3,c=8 | | x=5x10^24/2.5x10^13 | | 4x+8=6x+-1 |